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AIJstrad-An optimality criterion is used to obtain a minimum volume design of a conducting fin with an
arbitrarily located heat sink whose volume is a design variable. The finite element method is used for the
analysis. The effect of the heat sink as an active cooling device on the optimum volume of the fin is studied.

NOTATION
A area

AJ! reference area
A non-dimensional area (A/Ao)

[Cj conduction matrix
F Lagrangian
j iteration number

K thermal conductivity
I element length

L length of the fin
n number of elements

No heat generation number liL21ToKAo
N, non-dimensional sink strength Ii,L21ToK
Ii heat generated in the fin per unit length
Ii, heat sink strength

{q} thermal load vector
Tc constraint temperature
TL temperature at x =L

{T} temperature vector
T,g reference temperature
T non-dimensional temperature TI To
V volume
V non-dimensional volume VIAoL
x axial coordinate
A Lagrangian multiplier

Subscripts
i corresponds to the ith element
j corresponds to the jth iteration
s corresponds to the heat sink

I. INTRODUCTION

Optimality criterion methods are well developed in structural mechanics to search for
optimum designs of structures[l-3] subject to a variety of constraints. Recently, an optimality
criterion[4] has been developed to obtain optimum design of structures subjected to thermal
environment with temperature constraints. This thermal optimality criterion has been success­
fully tested on various one- and two-dimensional problems. Results obtained from the optimality
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criterion agree within 2% with results from a closed-form solution for one-dimensional
problems taken from Ref. [5], and with results from a mathematical programming technique for
the two-dimensional problem.

Recent developments in high-temperature structures include the concept of active cooling
where part of the heat is removed by heat sinks properly located at some places on the
structure. Therefore, in the design of a structure with active cooling devices, it is necessary to
include some parameters of the heat sink also as design variables. This paper presents an
attempt in this direction. The thermal optimality criterion developed in Ref.[4] is extended to
contain a parameter of the heat sink (its volume) as a design variable and is applied to the same
problem of obtaining an optimum configuration of the conducting fin of Ref. [5] with a heat sink
located at an arbitrary point on the fin.

The solution of the heat conduction problem is based on the classical finite element
method [6]. A one-dimensional finite element is used with a cubic temperature distribution along
the element. The nodal degrees of freedom of the element are T and dTldX. As each element is
of uniform cross section, the optimum configuration of the fin obtained from the present
method is a stepped one. The volumes of the fin and heat sink along with the area and
temperature distributions for optimum total volume of fin-sink combination are presented in the
form of tables for two locations of the heat sink and two sink strengths.

2. FORMULATION

Consider a cooling fin maintained at temperature T = 0 at X = 0, and insulated «dTldX) = 0)
at X = L, where L is the length of the fin. Heat is generated in the fin at a uniform
rate of q per unit length. At a point of the fin (say X = X.), heat sink of strength 4. is situated.
The problem is to find the volume and area distribution of the fin and volume of the sink for
optimum total volume of fin-sink combination such that the temperature at the insulated end is
Te.

Derivation 0/ optimality criterion
The matrix equation governing the heat conduction problem is

[C]{T} = {q} (1)

where [C] is the conduction matrix, {T} is the temperature vector, and {q} is the thermal load
vector.

The total volume, V, of the fin and the heat sink is given by

n

V= V.+ k A;/;
.=1

(2)

where V. is the volume of the heat sink, A; is the area of the ith finite element, I; is the length
of the ith element and n is the number of elements.

The constraint equation is

or

{TV{S}-Te=O

(3)

(4)

where h is the temperature of the fin at X = L, {S} is a vector of zeros except at those degrees
of freedom where a constraint is specified and where it has a value of unity, Te is the constraint
temperature and superscript T denotes matrix transposition.

A Lagrangian F, using a Lagrangian multiplier A, is

n

F = k A;I; + V. + A[{TV{S} - Tel
.=1

(5)
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Differentiating F with respect to A; we get

iJF iJ{Tf
iJA

j
= 'i+ A iJAi {S}=O.

Writing

{S} = (C]{r}
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(6)

(7)

where {r} is the temperature distribution for the "fictitious" load vector {S}, eqn (6) becomes

iJ{TV
Ij +A iJA

j
(C]{r} = O.

From eqn (1),

iJ{TV [C] = -{TV iJ[C] = -{TV [C]i
iJAj iJAj Ai

since the conduction matrix (C] is linearly dependent on the areas A j•

From eqns (6) and (9), we obtain

I
j

- A{T}/~Ji{rh = O.

The optimality criterion for the area of the elements can be expressed

A{T}nCMrh = 1
IjAj .

(8)

(9)

(10)

(11)

Similarly, differentiating F with respect to V., and replacing {TV{S} by {qV{r}, the optimality
criterion for the volume of the heat sink is obtained as

(12)

Note that the implicit assumption is made in eqn (12) that the temperature in the fin is linearly
dependent on the sink volume.

The optimality criterion states that if the fin area distribution Ai and sink volume V. satisfy
eqns (11) and (12), the Lagrangian F will be optimum and thus the design for the fin with the
heat sink is an optimum one. The values of A j and V. are obtained through recurrence relations
which are given below. The value of the Lagrangian mUltiplier is also evaluated using a
recurrence relation.

Recurrence relations for design variables
Recurrence relations can be derived from the optimality criteria. Multiplying eqns (11) and

(12) by Ai
a and V/ and taking the ath root and bth root of both sides, respectively, we get

and

A = A(A {T}nCMr}i)l/
a

I I IjAj

(
{qV{r})l/b

V. = V. -A -v:- .

(13)

(14)
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Equations (13) and (14) can be written as the recurrence relations

and

where j is the iteration number.

V = V (_' {q}{{rh)l/b
'j+1 'j J\ V

'j

(15)

(16)

Recurrence relation for A

To evaluate the value of A which is to be used in eqns (15) and (16). the constraint equation
is used. The constraint equation is

(17)

Multiplying both sides by Ac. taking the cth root and writing in the recurrence relation form as
has been done in the case of the design variables. we get

(
T )I/C

Aj +1 = Aj T~ . (18)

It has been shown in Ref. [4J that values of a =2 and c =2 in eqns (15) and (18).
respectively, give rapid convergence for Aj and A. Further. it has been found in the present
study that b = I (in eqn 16) gives good convergence for V•. Hence. in the present study the
values for a. band c are chosen as 2. I and 2. respectively.

3. NUMERICAL RESULTS AND DISCUSSION

The optimality criterion has been applied to obtain the optimum volume of a conducting fin
with a heat sink (l) located at the midpoint of the fin. and (2) located at the quarter point from
the insulated end of the fin. Heat is generated in the fin at a uniform rate (No = 1.0). Two
constraint temperatures and two values of the sink strength are considered in this paper. A
five-element (elements of equal length) idealization is used in this paper and the results are
presented after twenty iteration cycles.

Table I gives the fin volumes and sink volumes for optimum total volume of fin-sink
combination for two constraint temperatures and two sink strengths. From this table it is seen
that for a given constraint temperature the volume of the fin decreases and the sink volume
increases as the sink strength increases. Also. as tbe sink strength increases. tbe fin volume
decreases more rapidly and the sink volume increases significantly for a lower temperature
constraint compared to the case of a Illgher temperature constraint. This means that if the

Table I. Cooling fin with a central heat sink~ptimum volumes (VJ

Strength of T = 1.0 To = 0.30
Heat Sink Fin Volume heat ;;1nJ< VOiume F1n Volume Heat: "1nl< VOiume

N s

- 0.1 0.4542 0.0201 1. 4871 0.2202

- 0.3 0.4478 0.0596 1. 2799 0.5770

Without 0.4550 -- 1.5168 --
Heat Sink
(Ref. [4J)
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Table 2. Cooling fin with a central heat sink--optimum area distribution (A)

T
C = 1.0 Tc = 0.3

Element

Number Without Without
Ns = -0.1 Ns = -0.3 Heat Sink Ns = -0.1 Ns = -0.3 Heat Sink

Ref. (4) Ref. [4]

1 0.5828 0.5736 0.5839 1. 9042 1. 6125 1. 9464

2 0.5342 0.5247 0.5354 1. 7409 1. 4375 1. 7846

3 0.4772 0.4701 0.4781 1. 5608 1. 3321 1. 5938

4 0.4008 0.3971 0.4013 1. 3204 1.1966 1. 3377

5" 0.2760 0.2734 0.2764 0.9089. 0.8207 0.9213

"Element at the insulated end.

Table 3. Cooling fin with a central heat sink--optimum temperature distribution (T)

T
C

= 1.0 T = 0.3
Nodal

c

Number Without Without
Ns = -0.1 Nsa-O.3 Heat Sink Ns = -0.1 N = -0.3 Heat Sink

Ref. [4] s Ref. (4)

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.3098 0.3092 0.3099 0.0927 0.0906 0.0930

3 0.5714 0.5693 0.5717 0.1706 0.1634 0.1715

4 0.7806 0.7783 0.7809 0.2333 0.2256 0.2343

5 0.9301 0.9293 0.9301 0.2787 0.2764 0.2790

6" 1.0000 1. 0000 1. 0000 0.3000 0.3000 0.3000

"Insulated end

Table 4. Cooling fin with a heat sink at quarter point from the insulated end--optimum volumes (ii)
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Strength of Tc = 1.0 Tc = 0.3
Heat Sink

Ns Fin Volume Heat Sink Volume Fin Volume Heat Sink Volume

- 0.1 0.4528 0.0328 1.4374 0.3484

- 0.3 0.4356 0.0950 0.9889 0.7532

Without 0.4550 -- 1. 5168 --
Heat Sink

Ref. (4)



792 G. VENKATESWARA RAo and R. NARAYANASWAMI

Table 5. Cooling fin with a beat sink at quarter point from tbe insulated enll-optimum area distribution (A)

Te '" 1.0 Te 0.3
Element Without Wl.thout
Number Ns '" -0.1 Ns '" -0.3 Heat Sink Ns '" -0.1 Ns -0.3 Heat Sink

Ref. [4J Ref. [41

1 0.5813 0.5611 0.5839 1.8532 1. 3324 1. 9464

2 0.5328 0.5128 0.5354 1.6924 1.1800 1. 7846

3 0.4755 0.4552 0.4781 1.5005 0.9793 1.5938

4 0.3988 0.3797 0.4013 1.2497 0.7398 1. 3377

5* 0.2755 0.2690 0.2764 0.8912 0.7129 0.9213

*E1ement at the insulated end

Table 6. Cooling fin witb a beat sink at quarter point from the insulated end-<lptimum temperature
distribution ('f)

Te '" 1.0 Te 0.3
Nodal Without Without
Number Ns '" -0.1 N '" -0.3 Heat Sink N '" -0.1 Ns -0.3 Heat Sink

s Ref. [4J s Ref. [41

1 0.0 0.0 0.0 0.0 0.0 0.0

2 0.3102 0.3124 0.3099 0.0939 0.1019 0.0930

3 0.5720 0.5745 0.5717 0.1726 0.1824 0.1715

4 0.7810 0.7817 0.7809 0.2346 0.2383 0.2343

5 0.9299 0.9279 0.9301 0.2782 0.2715 0.2790

6* 1.0000 1. 0000 1. 0000 0.3000 0.3000 0.3000

*Insulated end

constraint temperature is higher, the effect of the sink is negligible; however, the sink plays an
important role when the constraint temperature is lower.

The results obtained in Ref. [4] for the case of the fin alone (without heat sink) are also
presented in Table 1 for the sake of comparison. It may also be pointed out that for a given
combination of sink strength and constraint temperature, the optimum total volume of the fin
and the heat sink is greater than the optimum volume of the fin without heat sink. However,
since the density of heat sink is much lower than that of the fin (actual values are not presented
here as this is a theoretical feasibility study), the mass of the fin-sink combination case
presented herein will be less than the mass of the fin problem without heat sink presented in
Ref. [4]. Tables 2 and 3 give the area distribution and temperature distribution along the fin,
respectively. The results of Ref. [4], where the effect of heat sink is not considered in the
analysis, are also presented in these tables for the sake of comparison.

The next three tables present similar results of the conducting fin with the heat sink situated
at the quarter point from the insulated end where the temperature constraint is prescribed. The
general trend of results for this case is similar to the previous one. It can be seen from Table 4
that the effect of heat sink in obtaining the optimum volume is more when the heat sink is
situated nearer to the point where the temperature is constrained.
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4. CONCLUDING REMARKS

An optimality criterion approach is successfully applied in this paper to obtain the optimum
volume of a conducting fin with an active cooling device such as a heat sink, the volume of
which is also a design variable. The results obtained indicate the usefulness of an active cooling
device to reduce the mass of a thermally-loaded structure with given temperature constraints.
The optimality criteria developed in this paper are general and appear to be both useful and
effective in feasibility studies for preliminary design of heat coolant systems.
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